I. **OVERVIEW**
The following information will appear in the 2012 - 2013 catalog

MACH 311 **CNC Programming with Macros** 1 Unit

Recommended for Success: Before enrolling in this course, students are strongly advised to satisfactorily complete MACH-219 and have previous CNC programming experience or on-the-job training.

The application and practice of using macro techniques in the development of programs for the operation of CNC machine tools.

Materials Fee Required

Two maximum completions.
Field trips might be required.
(P/NP Only) Lecture /Lab

II. **LEARNING CONTEXT**
Given the following learning context, the student who satisfactorily completes this course should be able to achieve the goals specified in Section III, Desired Learning:

A. **COURSE CONTENT**

1. **Required Content:**

a. **INTRODUCTION TO MACROS**

 i. What is a Macro Programming
 ii. Usage of Macros
 iii. Groups of Similar Parts
 iv. Offset Control
 v. Custom Fixed Cycles
 vi. Special G-codes and M-codes
 vii. Alarm and Message Generation
 viii. Probing and Gauging
 ix. Short cuts and Utilities

b. **BRIEF REVIEW OF PROGRAMMING TOOLS**

 i. G-codes and M-codes
 ii. Preparatory Commands
 iii. Miscellaneous Functions
 iv. Default Settings
 v. Modal Values
vi. Programming Format
vii. Rules of Subprograms
viii. Subprogram Nesting

c. SYSTEM PARAMETERS
 i. What are Parameters
 ii. Binary Numbers
 iii. Parameter Classification
 iv. Parameter Data Types
 v. Setting and Changing Parameters
 vi. Protection of Parameters
 vii. Changing Parameters
 viii. System Defaults

d. DATA SETTING
 i. Data Setting Commands
 ii. Coordinate Mode
 iii. Work Offsets
 iv. Memory Types - Milling and Turning
 v. Geometry Offset
 vi. Wear Offset
 vii. Adjusting Offsets
 viii. Absolute Mode
 ix. Incremental Modes
 x. Tool Offset Entry
 xi. MDI Data Setting
 xii. Programmable Parameter Entry
 xiii. Modal G10 Command
 xiv. Effect of Block Numbers

e. MACRO STRUCTURE
 i. Basic Tools
 ii. Variables
 iii. Functions and Constants
iv. Logical Operators

v. Defining and Calling Macros

vi. Macro Definition

vii. Macro Call

viii. Arguments

ix. Macro Program Numbers

f. CONCEPT OF VARIABLES

i. Types of Macro Variables

ii. Definition of Variables

iii. Variable Declaration

iv. Variable as an Expression

v. Usage of Variables

vi. Restrictions

vii. Custom Machine Features

g. ASSIGNING VARIABLES

i. Local Variables

ii. Assignment Lists

iii. Simple Macro Call

iv. Modal Macro Call

v. Main Program and Variables

vi. Local Variables and Nesting Levels

vii. Common Variables

viii. Volatile and Non-volatile Groups

ix. Input Range

x. Protecting Variables

h. MACRO FUNCTIONS

i. Function Groups

ii. Definition of Variables

iii. Referencing Variables

iv. Vacant Variables

v. Arithmetic Functions
vi. Division by Zero
vii. Trigonometric Functions
viii. Rounding Functions
ix. Miscellaneous Functions
x. Logical Functions
xi. Binary Numbers
xii. Conversion Functions
xiii. Evaluation of Functions

i. SYSTEM VARIABLES
 i. Identifying System Variables
 ii. System Variables Groups
 iii. Read Only Variables
 iv. Read and Write Variables
 v. Displaying System Variables
 vi. System Variables for Various Controls
 vii. Organization of System Variables
 viii. Resetting Program Zero

j. TOOL OFFSET VARIABLES
 i. System Variables and Tool Offsets
 ii. Tool Offset Memory Groups
 iii. Tool Offsets and the Number of Offsets
 iv. Tool Offsets and Control Types
 v. Tool Setting

k. MODAL DATA
 i. System Variables for Modal Commands
 ii. Preceding and Executing Blocks
 iii. Modal G-codes
 iv. Saving and Restoring Data
 v. Other Modal Codes

l. BRANCHING AND LOOPING
i. Decisions in Macro Development

ii. IF Function

iii. Conditional Branching

iv. Unconditional Branching

v. IF-THEN Option

vi. Single Conditional Expressions

vii. Combined Conditional Expressions

viii. Concept of Loops

ix. WHILE Loop Structure

x. Single Level Nesting Loop

xi. Double Level Loop

xii. Triple Level Loop

xiii. Other Conditions

xiv. Restriction of the WHILE Loop

xv. Conditional Expressions and Vacant Variables

xvi. Clearing 500+ Series of Variables

m. ALARMS AND TIMERS

i. Alarms in Macros

ii. Alarm Number

iii. Alarm Message

iv. Alarm Format

v. Embedding Alarm in a Macro

vi. Resetting Alarm

vii. Message Variable

viii. Timers in Macros

ix. Time Information

x. Timing an Event

n. AXIS POSITION DATA

i. Axis Position Terms

ii. Position Information

o. AUTOMATIC OPERATIONS
i. Controlling Automatic Operations

ii. Single Block Control

iii. M-S-T Functions Control

iv. Feedhold, Feedrate and Exact Check Control

v. Systems Settings

vi. Controlling Number of Machined Parts

p. SECOND COMPLETION

i. The practice and application of advanced techniques in the use of macros when developing of programs to operate CNC machine tools will be addressed when the student repeats this course.

ii. The increased exposure and use of macros when programming will increase the skill and proficiency levels that are expected in the workplace in an industry application.

iii. Skills or proficiencies are enhanced by supervised repetition and practice to obtain adequate proficiency levels.

2. Required Lab Content:

 The content learned in lecture is applied in the lab setting.

 a. INTRODUCTION TO MACROS

 i. What is a Macro Programming

 ii. Usage of Macros

 iii. Groups of Similar Parts

 iv. Offset Control

 v. Custom Fixed Cycles

 vi. Special G-codes and M-codes

 vii. Alarm and Message Generation

 viii. Probing and Gauging

 ix. Short cuts and Utilities

 b. BRIEF REVIEW OF PROGRAMMING TOOLS

 i. G-codes and M-codes

 ii. Preparatory Commands

 iii. Miscellaneous Functions

 iv. Default Settings

 v. Modal Values
vi. Programming Format
vii. Rules of Subprograms
viii. Subprogram Nesting

c. SYSTEM PARAMETERS
 i. What are Parameters
 ii. Binary Numbers
 iii. Parameter Classification
 iv. Parameter Data Types
 v. Setting and Changing Parameters
 vi. Protection of Parameters
 vii. Changing Parameters
 viii. System Defaults

d. DATA SETTING
 i. Data Setting Commands
 ii. Coordinate Mode
 iii. Work Offsets
 iv. Memory Types - Milling and Turning
 v. Geometry Offset
 vi. Wear Offset
 vii. Adjusting Offsets
 viii. Absolute Mode
 ix. Incremental Modes
 x. Tool Offset Entry
 xi. MDI Data Setting
 xii. Programmable Parameter Entry
 xiii. Modal G10 Command
 xiv. Effect of Block Numbers

e. MACRO STRUCTURE
 i. Basic Tools
 ii. Variables
 iii. Functions and Constants
iv. Logical Operators
v. Defining and Calling Macros
vi. Macro Definition
vii. Macro Call
viii. Arguments
ix. Macro Program Numbers

f. CONCEPT OF VARIABLES
 i. Types of Macro Variables
 ii. Definition of Variables
 iii. Variable Declaration
 iv. Variable as an Expression
 v. Usage of Variables
 vi. Restrictions
 vii. Custom Machine Features

g. ASSIGNING VARIABLES
 i. Local Variables
 ii. Assignment Lists
 iii. Simple Macro Call
 iv. Modal Macro Call
 v. Main Program and Variables
 vi. Local Variables and Nesting Levels
 vii. Common Variables
 viii. Volatile and Non-volatile Groups
 ix. Input Range
 x. Protecting Variables

h. MACRO FUNCTIONS
 i. Function Groups
 ii. Definition of Variables
 iii. Referencing Variables
 iv. Vacant Variables
 v. Arithmetic Functions
vi. Division by Zero
vii. Trigonometric Functions
viii. Rounding Functions
ix. Miscellaneous Functions
x. Logical Functions
xi. Binary Numbers
xii. Conversion Functions
xiii. Evaluation of Functions

i. SYSTEM VARIABLES
 i. Identifying System Variables
 ii. System Variables Groups
 iii. Read Only Variables
 iv. Read and Write Variables
 v. Displaying System Variables
 vi. System Variables for Various Controls
 vii. Organization of System Variables
 viii. Resetting Program Zero

j. TOOL OFFSET VARIABLES
 i. System Variables and Tool Offsets
 ii. Tool Offset Memory Groups
 iii. Tool Offsets and the Number of Offsets
 iv. Tool Offsets and Control Types
 v. Tool Setting

k. MODAL DATA
 i. System Variables for Modal Commands
 ii. Preceding and Executing Blocks
 iii. Modal G-codes
 iv. Saving and Restoring Data
 v. Other Modal Codes

l. BRANCHING AND LOOPING
 i. Decisions in Macro Development
ii. IF Function
iii. Conditional Branching
iv. Unconditional Branching
v. IF-THEN Option
vi. Single Conditional Expressions
vii. Combined Conditional Expressions
viii. Concept of Loops
ix. WHILE Loop Structure
x. Single Level Nesting Loop
xi. Double Level Loop
xii. Triple Level Loop
xiii. Other Conditions
xiv. Restriction of the WHILE Loop
xv. Conditional Expressions and Vacant Variables
xvi. Clearing 500+ Series of Variables

m. ALARMS AND TIMERS
 i. Alarms in Macros
 ii. Alarm Number
 iii. Alarm Message
 iv. Alarm Format
 v. Embedding Alarm in a Macro
 vi. Resetting Alarm
 vii. Message Variable
 viii. Timers in Macros
 ix. Time Information
 x. Timing an Event

n. AXIS POSITION DATA
 i. Axis Position Terms
 ii. Position Information

o. AUTOMATIC OPERATIONS
 i. Controlling Automatic Operations
ii. Single Block Control

iii. M-S-T Functions Control

iv. Feedhold, Feedrate and Exact Check Control

v. Systems Settings

vi. Controlling Number of Machined Parts

B. ENROLLMENT RESTRICTIONS

1. Advisories

Before enrolling in this course, students are strongly advised to satisfactorily complete MACH-219 and have previous CNC programming experience or on-the-job training.

C. HOURS AND UNITS

<table>
<thead>
<tr>
<th>INST METHOD</th>
<th>TERM HOURS</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lect</td>
<td>9</td>
<td>0.50</td>
</tr>
<tr>
<td>Lab</td>
<td>27</td>
<td>0.50</td>
</tr>
<tr>
<td>Disc</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

D. METHODS OF INSTRUCTION (TYPICAL)

Instructors of the course might conduct the course using the following method:

1. Lecture

2. Video tape

3. Lab demonstration.

E. ASSIGNMENTS (TYPICAL)

1. EVIDENCE OF APPROPRIATE WORKLOAD FOR COURSE UNITS

Time spent on coursework in addition to hours of instruction (lecture hours)

1. The student will be expected to weekly review the previous lecture to verify thorough understanding of the subject matter covered at that time.
2. Weekly assigned task will be completed before the next class meeting, with any programs written, edited, and graphically verified by simulation software.
3. Before each class meeting, the student will preview the topic to be covered and understand the relationship of the subject matter to the previous lessons.

2. EVIDENCE OF CRITICAL THINKING

Assignments require the appropriate level of critical thinking

Assignment Example: You will systematically analyze the existing program and the operational sequence to determine if this process could be improved upon by applying the macro programming techniques that have been covered during this class. If it is determined that a substantial improvement would result, then you will select the most efficient format, determine necessary variables, and rewrite that portion of the program using sound Macro programming techniques.

F. TEXTS AND OTHER READINGS (TYPICAL)
III. DESIRED LEARNING

A. COURSE GOAL
 As a result of satisfactory completion of this course, the student should be prepared to:

 make use of macros in the development of programs that will operate CNC machine tools.

B. STUDENT LEARNING GOALS
 Mastery of the following learning goals will enable the student to achieve the overall course goal.

 1. Required Learning Goals
 Upon satisfactory completion of this course, the student will be able to:

 a. Recognize the need for a 'Macro Program' from a variety of machined part blueprints and quantify the benefit of using macros.

 b. Recognize the need for a macro program to control CNC machine functions, like work offsets, height offsets, diameter offsets, part counting, and others.

 c. Utilize the 'Fanuc Macro B' type language when preparing macro part programs.

 d. Read & interpret sample macros and describe the function of the macro to others.

 e. Check/set the CNC Machine parameters so macro programs can be executed.

 f. Understand how 'Macro Programs' can communicate with other CNC Machine Tool options, like probes & RS-232 serial communication input/output.

 g. Be able to troubleshoot & correct a macro program that is not working correctly.

 h. Understand & use variables for part feature dimensions.

 i. Realize the similarities of the 'Fanuc Macro B' language to the 'Basic' computer language.

 2. Lab Learning Goals
 Upon satisfactory completion of the lab portion of this course, the student will be able to:

 a. Write a program using Macro programming techniques that will produce the desired results when run on a Haas CNC simulator.

 b. in the second completion apply advanced techniques using macros to develop programs faster and more reliably to meet skill levels expected in the workplace.

IV. METHODS OF ASSESSMENT (TYPICAL)

A. FORMATIVE ASSESSMENT

 1. Instructor observation of student planning and development of programs during labs

 2. Review of project product quality to specifications

 3. Periodic short quizzes that evaluate understanding of material as it is introduced
B. **SUMMATIVE ASSESSMENT**

1. Final Exam

2. Evaluation of quality and accuracy of comprehensive final CNC programming project